3 - Year Fine Particle (PM_{2.5}) Data Quality Assessment

Mike Papp, Shelly Eberly, Mark Schmidt

Presentation Topics

- Program Background
- Data Quality Objectives
- Data Quality Assessment
- Next Steps

Fine Particles (PM_{2.5})- what are they?

A complex mixture of extremely small particles and liquid droplets with aerodynamic diameters of \leq [a nominal] 2.5 um

PM_{2.5} particles are so small that 30 of them side-byside would barely equal the width of a human hair (graphic courtesy of U.S. Department of Energy)

Why Collect PM_{2.5} Data?

- **The comparison with annual PM**₂₅ NAAQS (15 ug/m³)
- **The comparison with daily PM**₂₅ NAAQS (65 ug/m³)
- Information for sensitive groups (AQI)
- **General information to public (mapping)**
- Support health studies, evaluation of emission inventories, simulation models, ...
- General understanding/characterization (temporal and spatial) of air quality

Data can be used for all these analyses... BUT... real question is how confident are we in the results?

1999-2001 Annual Mean PM 2.5

Understanding and Controlling Uncertainty

A process for ensuring that environmental data will be adequate for their intended use.

- Clarifies study objectives
- Defines appropriate types of data to collect
- Specifies the tolerable levels of potential decision errors

What is a power curve?

- Graphically represents the quality of the decision process
- Shows the probability that environmental data will lead us to a given decision, as function of unknown truth
- Stipulate the decision makers tolerable risk for decision errors
- Assists in understanding the magnitude of uncertainties and optimizing sampling designs

What do you use to feed a power curve?

Parameters in Developing PM_{2.5} Mass DQOsthe Conservative Approach

A Fed PM_{2.5} DQO Power Curve (based on conservative assumptions)

Data Quality Objective

Decision around the gray zone can be made with 95% confidence if:

- ✓ Completeness can be maintained at 75% or above
- ✓ Precision can be controlled to 10% CV , and
- ✓ Bias can be controlled to \pm 10%

PM_{2.5} Completeness- Routine Data

PM_{2.5} Completeness (Requirement) & Capture Rate (Performance)

Routine Data Completeness -Average Capture Rates

PM_{2.5} Precision- National Estimates

Points are labeled with the number of observations in each quarter

Only values > 6 ug/m ³used

PM_{2.5} Precision - Major Method Designations

PM_{2.5} Precision- National Perspective

Aggregated over all Reporting Organizations within each state. Only Values > $6\mu q/m^3$ Used.

PM_{2.5} Bias- National Estimates by Quarter

Points are labeled with the number of observations in each quarter Only values > 6 ug/m €used

$PM_{2.5}$ Bias... A trend?

PM_{2.5} Bias by Major Method Designation

PM_{2.5} Bias Estimates-**National Perspective**

Aggregated over all Reporting Organizations within each state.

Only Values > $6\mu q/m^3$ Used.

PM_{2.5}Bias-Spatial Distribution of Site-Level 99-01

Well... What does the PM_{2.5} data quality indicators tell us relative to the DQO? Can we feed the power curve?

Resulting DQOs for Annual NAAQS

- Acceptable/achievable 3-yr average bias was 10% and 3-yr measurement precision was 10% CV.
- Associated gray zone is [12.2,18.8]. Recall this
 - is for comparison to annual NAAQS, and
 - is for one of the most extreme cases
 - high seasonal ratio
 - high pop cv
 - 1-in-6 sampling with 75% completeness
- Annual Standard Gray Zone
 - especially sensitive to: sampling frequency, bias, population variability, seasonal ratio
 - not sensitive to: measurement precision

Examples of Sensitivity of Gray Zone

Sampling Frequency

• 1 in 6: [12.2,18.8]

• 1 in 3: [12.8,17.9]

• Daily: [13.5,17.1]

Power Curve for Different Sample Frequencies

Bias

• 5% bias: [13.0,17.7]

• 10% bias: [12.2,18.8]

• 20% bias: [11.3,21.1]

Power Curve for Different Biases

Next Steps

- Develop DQO variables list at the Site Level
 - available in QA Report
 - will provide 3-year performance as well as the last year (2001)
 - determines whether the site is within the DQO gray zone.
- States can access DQO Software and plug their variables into the tool (http://www.epa.gov/ttn/amtic/dqotool.html)

SITE LEVEL PARAMETERS FOR DOO TOOL and RESULTING GRAY ZONES														
	Population Variables													
	(not expected to change from 3-yr period									Fature 0 Vers Fatiguetes and Occo 7ages (Personal				
	to 3-yr period)			99-'01 Estimates and Gray Zones					"Future" 3-Year Estimates and Gray Zones (Based or					
	Average Conc. (NOT	Seasonal		Autocor-	Samp			Measurement		,	2001 Samp	2001		2001 Measurement
AIRS ID	DV)	Ratio	Popn CV	relation	Frea	Completeness	Bias	CV	Zone	Zone?	Frea	Completeness	2001 Bias	CV
Site 1														
Site 2														
Site 3														

Next Steps (continued)

- Review and Revise Precision and Bias Statistics
 - May be able to keep data < 6 ug/m³

Next Steps (continued)

Pursue bias trend

- Work with State, Locals and Tribes
- Focus PEP around "important" sites
- Try to increase PEP completeness

Supporting information for DQO Assumptions

The Annual Standard is the Controlling Standard

Terminology - Definition of Precision

- Precision repeatability of a measurement system.
- **Stimated using collocated instruments of same make.**
 - 25% of sites in a reporting organization collocated. Sampled every 6 days
 - Precision based on 3 years of data at reporting organization level

Terminology - Definition of Bias

- Bias deviation from "truth."
- Estimated using PEP ((FRM-PEP)/PEP).
 - 25% of sites in a reporting organization collocated with PEP sampler 4 times a year
 - Bias based on 3 years of data at reporting organization level

Terminology - Season Ratio & Population Variability (data set - sites with annual means between 10 -20 ug/m³)

- Season Ratio- ratio between high an low points on a curve on a monthly or bi-monthly basis
- Population variability population variation about mean seasonal curve (CV) on a monthly or bi-monthly basis

Season Ratio and Population Variability

Distribution of ratios of highest to lowest monthly or bi-monthly mean at a site.

	Monthly	Bimonthly
# of sites	289	292
Mean	2.07	1.76
Percentiles		
Minimum	1.24	1.11
90.0	2.60	2.12
91.0	2.65	2.36
92.0	2.79	2.38
93.0	2.87	2.49
94.0	3.01	2.57
95.0	3.70	3.17
96.0	4.41	3.36
97.0	4.61	3.90
98.0	5.25	4.03
99.0	6.05	4.69
Maximum	6.54	4.89

Distribution of CVs about monthly and bimonthly means

	Monthly	Bimonthly	
# of sites	3,398	1,752	
Mean	49.6	50.7	
Percentiles			
Minimum	16.1	22.9	
10	34.6	37.6	
25.0	40.4	42.8	
50.0	48.1	49.4	
75.0	56.3	56.9	
90.0	66.6	64.7	
95.0	73.7	70.5	
96.0	75.4	72.3	
97.0	78.2	75.9	
98.0	83.8	79.1	
99.0	93.5	89.8	

Season Ratio of 5.3 and Pop. CV of 80% chosen (conservative but realistic)

Normal vs Lognormal Distribution Around Sinusoidal Curve

Normal distribution with 80% pop. CV would result in about 10% negative values

Normal Distribution of Measurement Uncertainty

- Current PM2.5 precision estimates (CY99, 00, 01)
 are ~ 8% CV
- Normal and lognormal measurement uncertainty very similar at lower CV's
- Therefore; normal distribution assumption is appropriate.

Auto Correlation

- How well 1 day can predict (correlates to) the next
 - There is auto correlation during everyday sampling
 - Since the DQO set at 1 in 6 day sampling auto correlation set to 0

Now that we have all these #@*!assumptions how do we use them?